MANUAL DO USUÁRIO

KONECT Multimedidor de Energia

www.kron.com.br Revisão 3.1

Índice

Capítulo	Página
Introducão	2
Termo de Garantia	4
Parâmetros de medição	5
Características técnicas	6
Dimensionais	7
Instalação do Produto	7
Esquemas de Ligação	11
IHM – Interface Homem Máquina	18
Horímetro e Status da Carga	23
Interface Serial RS-485	24
Configuração de IP em LAN	27
Acesso à Página Web	29
Softwares RedeMB e RedeMB-TCP	30
Aplicativo Kron-Fi	42
Solução de Problemas	47
Solução de Problemas – Interface RS-485	48
Apêndice A – Código de Erro	49
Apêndice B – Demanda	50
Apêndice C – Fórmulas Utilizadas	51
Apêndice D – Memória de Massa / Buffer MQTT (IoT)	52
Apêndice E – Glossário	53

O Konect foi desenvolvido e é fabricado pela KRON Instrumentos Elétricos, uma empresa fundada em 1954, com experiência na fabricação de instrumentos para medição e controle de processos, cuja política principal é o constante aperfeiçoamento e desenvolvimento tecnológico, industrial e humano, no sentido de aumentar o grau de confiabilidade de seus produtos para suprir as expectativas de seus usuários.

As informações contidas neste manual têm por objetivo auxiliá-lo na utilização e especificação correta do Konect. Devido ao constante aperfeiçoamento, as informações aqui contidas estão sujeitas a modificações sem aviso prévio.

Introdução

O **Konect** representa uma nova abordagem no segmento de medidores de energia, unindo medição de parâmetros elétricos a integração de outros componentes presentes em sistemas de automação industrial, incorporando múltiplas funções em um único e versátil produto.

Produzido em invólucro próprio para instalação em fundo de painel, utiliza sinais de corrente alternada ou contínua como entrada para alimentação auxiliar (Fonte Universal 85 a 265Vca / 100 a 350 Vc.c.). Realiza medições de corrente de modo direto para até 63Ac.a. ou com auxílio de transformadores externos. Para tensão, a medição direta se estende de 20 a 500Vc.a. (Fase-Fase). Apresenta memória de massa de 2MB para registro periódico das grandezas medidas.

A integração aos sistemas de automação pode ser realizada por meio de diversas interfaces de comunicação, como saídas Ethernet e RS-485, LoRa e conexão por Bluetooth ou Wi-Fi*.

Assim como já acontece com outros dispositivos de eletrônica embarcada - celulares, tablets, carros, sistemas de segurança, etc.- o Konect incorpora o conceito de Internet das Coisas (IoT).

Nesta abordagem, os medidores enviam os dados para servidores em nuvem, sem a necessidade de uma solicitação externa, requerendo apenas conexão à Internet. Os dados são transmitidos utilizando o protocolo MQTT.

Contem servidor WEB interno, que permite obter leitura de grandezas elétricas e configurar os instrumentos via navegador de Internet (Internet Explorer, Firefox, Netscape, etc.).

A presença de saídas e entradas digitais*, entradas analógicas* e para sensores PT-100*, o torna capaz de concentrar dados referentes, por exemplo, às medições de consumo de água e gás, temperatura, indicação de nível de umidade do ar, bem como realizar controle de iluminação, supervisão de grandezas e auxiliar em sistemas de controle de carga.

É imprescindível a leitura do Manual do Usuário antes da instalação e utilização do Konect, sendo possível esclarecer eventuais dúvidas através de nosso suporte telefônico (telefone: 11 5525-2000) ou de nosso e-mail <u>suporte@kron.com.br</u>

*Para estas opções, consulte disponibilidade estabelecendo contato com o suporte técnico.

Termo de Garantia

A *Kron Instrumentos Elétricos Ltda* garante que seus produtos são rigorosamente calibrados e testados, comprometendo-se a repará-los caso venham apresentar eventuais defeitos de fabricação.

Garantia de 1 (um) ano:

A partir da data de aquisição do produto conforme comprovação da nota fiscal de compra.

A garantia não cobre:

- Aparelhos que tenham sido adulterados;
- Desmontados ou abertos por pessoal não autorizado;
- Danificados por sobrecarga ou erro de instalação;
- Usados de forma negligente ou indevida;
- Danificados por qualquer espécie de acidente.

Manutenção:

A manutenção preventiva dos aparelhos é desnecessária. A manutenção corretiva, se necessária, deve ser feita por pessoal especializado da **Kron Instrumentos Elétricos**, mediante envio da peça defeituosa para nossa fábrica. A limpeza do instrumento, quando necessária, deve ser feita apenas nas áreas externas, utilizando material neutro e com todas as conexões elétricas desfeitas.

Deve ser feita, em casos muito especiais, uma aferição do aparelho de 2 em 2 anos, no intuito de garantir sua precisão.

Parâmetros de Medição

Com o Konect é possível realizar a medição de até 50 grandezas elétricas em sistemas monofásicos, bifásicos, trifásicos estrela ou delta. Todas as medições são TRUE RMS (valor eficaz verdadeiro).

	Grandeza	Unidade	Tipo de Medição
	Tensão	Vc.a.	Trifásica/Bifásica, Fase-neutro (sistema estrela/monofásico) ou Fase-fase (sistema estrela ou delta)
	Corrente	Ac.a.	Trifásica ou Bifásica / Por fase
SE	Potência Ativa	W	Trifásica ou Bifásica / Por fase
neä	Potência Reativa	VAr	Trifásica ou Bifásica / Por fase
ntâ	Potência Aparente	VA	Trifásica ou Bifásica / Por fase
sta	Fator de Potência	-	Trifásico ou Bifásico / Por fase
2	Frequência	Hz	Fase R
	THD - (por fase de tensão e corrente, até a 40ª ordem)	%	Por fase
	Harmônicos Individuais (por fase de tensão e corrente até 40ª ordem)	%	Por fase
	Fator K	-	Por fase
	Energia Ativa Positiva	KWh	
	Energia Ativa Negativa	KWh	
	Energia Reativa Positiva	KVArh	
se	Energia Reativa Negativa	KVArh	
itiv	Demanda Média Ativa	KW	Trifásica, bifásica ou monofásica,
nla	Demanda Média Aparente	KVA	dependendo do circuito que está
m	Demanda Máxima Ativa	KW	sendo medido.
Ac	Demanda Máxima Aparente	KVA]
	Máxima Tensão Trifásica	Vc.a.]
	Máxima Corrente Trifásica	Ac.a.]
	Horímetro	-	

Medição de Demanda (para mais informações, consulte o apêndice C)

O Konect utiliza o algoritmo de bloco de demanda (ou janela deslizante) para a medição de demanda, com intervalo de tempo programável de 1 a 60 minutos.

Memória Não Volátil

O Konect é equipado com tecnologia que garante que os dados de energia e as máximas demandas, máximas tensão trifásica e corrente trifásica não serão perdidos (por um período de até 10 anos) em caso do equipamento ser desligado ou ocorrer falta de energia elétrica.

Características Técnicas

Alimentação Externa:

- <u>110/220Vc.a.</u>
- <u>Fonte Universal</u>: 85 a 265Vc.a. ou 100 a 350 Vc.c.

Consumo máximo: < 10,0 VA

Para alimentação em corrente contínua, é recomendável a utilização de um fusível de 500mA em série com o instrumento.

Para alimentação em corrente alternada (110Vca/220Vca), é recomendável a instalação de um fusível ou disjuntor de proteção de 1 A.

Entrada de Tensão:

- Faixa de trabalho: 20 até 500 Vc.a. (F-F)
- Frequência de Operação: 50 Hz (42,5 a 57,5Hz) | 60Hz (51 a 69Hz)
- Consumo máximo: < 0,5 VA
- Sobrecarga: 1,5xVmáx (1s)

É recomendável a instalação de um fusível ou disjuntor de proteção (1 A).

Entrada de Corrente: Transformadores Split Core

- Nominal (In): 63Ac.a.(padrão), 5Ac.a. ou Split Cores de 100, 200, 300 ou 600Ac.a.
- Indicação mínima: 200mA (63Ac.a. ou 5Ac.a.), 2% da nominal (Split core)
- Consumo interno: < 0,5 VA

Precisão*:

- Tensão, corrente, potência ativa, reativa e aparente, fatores de potência: 0,5%
- Frequência: 0,1Hz
- Energias: 1,0%
- THD e Harmônicos: ± 5% *Testes baseados em referências descritas na Tabela 4 - item 4.6.2 da resolução ANEEL Prodist – Módulo 8, Revisão 7 e na Tabela 1, item 5.3 da IEC 61000-4-7 – 2002-08.

*Todas as medições são True RMS.

** A precisão se refere ao fundo de escala.

Isolação Galvânica:

• Entre entradas e saídas: 1,5kV

Interfaces de Comunicação:

- RS-485:
 - Conexão: Borne de encaixe rápido
 - Velocidade: 9600, 19200, 38400 ou 57600 bps
 - Formato de dados: 8N1/8N2/8E1/8O1
 - Protocolo: MODBUS-RTU (ver capítulo Interface RS-485)
- Ethernet:
 - Conexão: RJ-45
 - Velocidade: 10/100 Mbps
 - Protocolo: Modbus TCP/IP, MQTT ou Bacnet IP
- Bluetooth - Protocolo: Modbus RTU
- Wi-Fi
- Protocolo: Modbus TCP/IP e MQTT
- LoRa: Protocolo LoRaWan (LA 915 928A)

Aspectos Mecânicos:

- Alojamento: termoplástico (ABS VO)
- Fixação: em fundo de painel, através de trilho DIN 35mm
- Grau de Proteção: IP20
- Posição de Montagem: qualquer

Condições Ambientais de Uso

- Operação: 0 a 60ºC
- Umidade relativa do ar: máxima de 90% (sem condensação)
- Temperatura de armazenamento e transporte: -25 a 60ºC
- Coeficiente de temperatura: 50ppm/ºC

Interfaces digitais

- Entrada:
 - 3 entradas de tipo acoplador óptico
 - Tensão: 12-24Vcc
 - Frequência máxima: 2 Hz
- Saída:
 - 2 saídas a relé
 - Características elétricas: 250 V-2 A (CA ou CC)
 - Acionamento: Comando via Interfaces de comunicação

Interfaces analógicas

- Entradas: 2 entradas analógicas, 0-10 Vc.c. ou 4-20mAc.c. (opção definida em pedido)
- Temperatura: 1 entrada para PT-100 (0 a 150°C)

Dimensionais

Instalação do Produto

С

O processo de instalação é baseado em cinco etapas, conforme abaixo. Devem ser utilizados cabos com secção mínima de 1,5mm² para as conexões de alimentação externa, sinal de tensão e sinal de corrente (quando utilizado com TC's externos).

F

Para o uso com medição direta, os cabos que alimentarão a(s) carga(s) a serem medidas deverão estar de acordo com a corrente nominal das mesmas e não deverão exceder diâmetro de 9mm.

Para todas as conexões aos transdutores é **obrigatório** o uso de terminais tipo pino, de forma a se obter melhor conexão e não danificar os terminais.

<u>ATENÇÃO</u>

A instalação, parametrização e operação do Konect deve ser feita apenas por pessoal especializado, com ciência e plena compreensão do conteúdo do Manual do Usuário. Todas as conexões devem ser feitas com o sistema desenergizado. Em caso de dúvidas, consulte nosso Suporte Técnico por telefone (+55 11 5525-2000) ou pelo email <u>suporte@kron.com.br</u>.

1. Fixação do Konect no painel

O primeiro passo é fixar o **Konect** no fundo do painel. O instrumento pode ser fixado em qualquer posição, no entanto, para sua melhor utilização, recomenda-se a instalação de maneira que seja possível ler e compreender as informações do painel frontal e display.

2. Alimentação Externa

O **Konect** é produzido para uma determinada tensão de alimentação externa, identificada por meio de etiqueta afixada em sua superfície superior.

É necessário que a tensão utilizada para a alimentação externa esteja dentro da faixa permitida para o medidor, sob risco de danos, em caso de ligação incorreta ou com tensão acima do permitido.

Após realizar a conexão elétrica nos bornes indicados e energizar o instrumento, o mesmo deverá acender todo o seu display e iniciar a medição no modo energia, na tela de energia ativa positiva (EA+), conforme exemplo abaixo:

Deve ser prevista uma chave do tipo "liga/desliga" para a alimentação externa do instrumento, a qual deverá estar devidamente identificada e de fácil acesso ao operador. Para operação do medidor, após sua instalação, é recomendável que a película de proteção do painel frontal seja removida, tornando melhor a visualização das informações no display do **Konect**.

Antes de prosseguir à ligação de corrente e tensão, é necessário escolher qual o esquema elétrico adequado para a aplicação em que o **Konect** está sendo utilizado. Para tanto, verifique o capítulo *Esquemas de Ligação* antes de prosseguir.

3. Sinal de Tensão

Verifique, utilizando o esquema de ligação adequado, como deve ser feita a ligação das tensões. É recomendável a utilização de disjuntores ou fusíveis de proteção entre o sistema e o **Konect**, para proteger o instrumento e facilitar posteriores manuseios na instalação. É imprescindível que o sinal de tensão esteja em sentido horário (R-S-T).

A conexão de transformadores de potencial somente é necessária em casos onde se deseja isolar o circuito de medição da instalação elétrica ou quando a tensão entre fases do sistema ultrapassa 500Vc.a. (F-F) ou 288, 67Vc.a. (F-N, no caso de utilização do esquema *TL-02: Monofásico*).

4. Sinal de Corrente

Para medições indiretas via TCs externos

Verifique, utilizando o diagrama adequado, como deve ser feita a ligação de corrente. A conexão de transformadores de corrente é necessária em casos onde a corrente de linha supera a nominal do instrumento ou quando a bitola dos cabos aplicados a carga a ser medida excede o diâmetro dos tc's internos (9mm). Com os transformadores de corrente convencionais, saída de 5Ac.a., devemos estar atentos às polaridades (P1/P2, S1/S2) e também ao "casamento" entre as conexões de corrente e tensão. É recomendável a utilização de *blocos de aferição* ou outro dispositivo com a mesma função de curto-circuitar os transformadores de corrente para posterior manutenção ou troca do equipamento, permitindo isolá-lo do circuito principal sem necessidade de desligamento da carga medida.

ATENÇÃO: <u>NUNCA</u> DEIXE O SECUNDÁRIO DE TRANSFORMADORES DE CORRENTE EM ABERTO, POIS ISSO PROVOCARÁ ELEVADAS TENSÕES NO SECUNDÁRIO DO TRANSFORMADOR, PODENDO OCASIONAR DANOS AO MESMO E RISCOS DE SEGURANÇA.

Para versão padrão

O Konect possui TCs internos para medição direta de até 63A, dispensando o uso de TCs.

O sentido padrão da corrente é de cima para baixo, conforme seta indicativa no corpo do medidor, porém, é possível alterar o sentido da corrente via software.

5. Parametrização

O Konect permite a configuração TP, TC, TL, TI, sentido de corrente, endereço e serial diretamente pela IHM, demais configurações devem ser feitas por meio de suas interfaces de comunicação, utilizando o software **Redemb, aplicativo Kron-Fi (medidores com Wi-Fi) ou via página Web (medidores com saída Ethernet)**. De fábrica o **Konect** é fornecido com os seguintes valores:

ТР	1	тс	1	TL	0	ті	15
BAUD RATE (RS-485)	9600 bps	BITS (RS-485)	8N2	ENDEREÇO MODBUS –RTU (RS-485)	254	DHCP (Ethernet)	OFF (IP Estático)
IP (Ethernet)	10.0.0.1	MÁSCARA DE SUB-REDE (Ethernet)	255.0.0.0	GATEWAY (Ethernet)	0.0.0.0	DNS (Ethernet)	0.0.0.0
Slave ID (MODBUS-TCP)	255	DHCP (Wi-Fi)	ON	Bluetooth	OFF		

6. Conferência da instalação e coerência das medições

Após estar devidamente instalado, parametrizado e energizado, é recomendável verificar a coerência das medições que estão sendo realizadas pelo **Konect**.

Para tanto, é recomendado que se execute a seguinte *check list*, sendo necessário ler o capítulo *Interface Homem-Máquina*, para orientações sobre como fazer a leitura dos parâmetros medidos pelo **Konect**.

- 1) A leitura de tensão está conforme o esperado?
- 2) A leitura de corrente está conforme o esperado?
- 3) A leitura da potência ativa está conforme o esperado?
- A leitura do fator de potência está conforme o esperado? Desconfie de fatores de potência muito baixos ou incoerentes com a instalação.

Esquemas de Ligação

	Monofásico
11 02	1 elemento 2 fios

Aplicação:

Medição de circuitos monofásicos.

O uso de transformadores de corrente e potencial somente é necessário caso a corrente ou tensão do sistema exceda os limites especificados no capítulo *Características Técnicas*.

É possível utilizar **qualquer uma das três fases para medição**, desde que a referência seja conectada aos canais "Va" e "Ia". A referência de Neutro pode receber tensão de fase, desde que a resultante entre fase e neutro seja inferior a 288,67 Vc.a. (F-N)

TL 01

Bifásico 2 elementos 3 fios

Aplicação:

Medição de circuitos bifásicos.

O uso de transformadores de corrente e potencial somente é necessário caso a corrente ou tensão do sistema exceda os limites especificados no capítulo *Características Técnicas*.

É imprescindível que a sequência das fases esteja em sentido horário (R-S-T), ou seja, R – T, S – R ou T – S.

TL 00 Trifásico Equilibrado ou Desequilibrado Estrela (3F + N) 3 elementos 4 fios

Aplicação: Medição de circuitos trifásicos estrela (3F + N).

O uso de transformadores de corrente e potencial somente é necessário caso a corrente ou tensão do sistema exceda os limites especificados no capítulo *Características Técnicas*.

É imprescindível que a sequência das fases esteja em sentido horário (R-S-T).

TL 48Trifásico Desequilibrado Delta (3F) – 3 elementos
3 elementos 3 fios – 2TPs

Aplicação:

Medição de circuitos trifásicos delta (3F), com uso de 3 (três) transformadores de corrente (elementos) e 2 (dois) transformadores de potencial.

O uso de transformadores de corrente e potencial somente é necessário caso a corrente ou tensão do sistema exceda os limites especificados no capítulo *Características Técnicas*.

É imprescindível que a sequência das fases esteja em sentido horário (R-S-T).

TL 00

Trifásico Equilibrado ou Desequilibrado Estrela (3F + N) – ligação a TCs externos de 5Ac.a./Medição direta de tensão 3 elementos 4 fios

Aplicação: Medição de circuitos trifásicos estrela (3F + N).

O uso de transformadores de corrente e potencial somente é necessário caso a corrente ou tensão do sistema exceda os limites especificados no capítulo *Características Técnicas*.

É imprescindível que a sequência das fases esteja em sentido horário (R-S-T).

OBS: Replique o conceito acima para os demais tipos de ligação.

Trifásico Equilibrado ou Desequilibrado Estrela (3F + N) – ligação a TCs do tipo Split Core Medição direta de tensão 3 elementos 4 fios

5 cicinentos 4 nos

Aplicação: Medição de circuitos trifásicos estrela (3F + N).

O uso de transformadores de corrente e potencial somente é necessário caso a corrente ou tensão do sistema exceda os limites especificados no capítulo *Características Técnicas*.

É imprescindível que a sequência das fases esteja em sentido horário (R-S-T).

OBS: Replique o conceito acima para os demais tipos de ligação.

Esquema de Ligação – Entradas Digitais

As entradas digitais têm como finalidade obter informações de sensores externos (medidor de água, medidor de gás, etc...). Cada entrada opera como contador da quantidade de pulsos vindos dos medidores de outras variáveis. Estas quantidades ficam então disponíveis para leitura via comunicação com o Konect (RS-485, Ethernet, Wi-Fi ou Bluetooth).

Ao estabelecer comunicação, é possível obter, além dos contadores de pulsos, a largura do último pulso e o status das entradas (ON/OFF).

É importante ressaltar que a associação das quantidades de pulsos a seus parâmetros de equivalência é feita fora do instrumento.

No Konect estão disponíveis três entradas, indicadas como "EDP1", "EDP2" e "EDP3".

IHM: Interface Homem-Máquina

O Konect é equipado com um *display LCD* de 16 caracteres (8 x 2) e back-light para visualização das grandezas medidas.

A interface do Konect possui os seguintes modos de trabalho:

1) Modo Energia (MEDICAO ENERGIA)

Leitura das medições acumulativas (energia, demanda, etc...)

2) Modo Instantâneo (MEDICAO INSTANT)

Leitura das medições instantâneas (tensão, corrente, etc...)

3) Modo Parâmetros (MODO PARAMET)

Permite a configuração das relações de TP, TC, Tipo de ligação, tempo de integração para cálculo de demanda, serial, endereço Modbus, Threshold, sentido de corrente e habilitar senha de acesso.

4) Modo Sistema (MODO SISTEMA)

Acesso as informações de número de série, código de erro, número de partidas e versão de firmware.

5) Modo Configuração Ethernet (CONFIG ETH)

Verificação das configurações de IP, Máscara de Sub-Rede, Gateway, DNS, DHCP (ON/OFF) e Mac Address da saída Ethernet.

6) Configuração LoRa (CONFIG LORA)*

Verificação das configurações de device EUI, ADR, ativação, classe, RSSI e código de erro.

7) Modo sem fio (MODO SEM FIO)*

Permite ao usuário escolher o tipo de comunicação sem fio que será utilizada (Wi-Fi ou Bluetooth)

8) Configuração Bluetooth (CONFIG BT)

Verificação da descrição do medidor, Mac Bluetooth e se o Bluetooth está habilitado

9) Configuração Wi-Fi (CONFIG Wi-Fi)*

Verificação do SSID da rede, configurações de IP, Máscara de Sub-Rede, Gateway, DNS, DHCP (ON/OFF), Mac Address e status da comunicação.

10) Modo AP (MODO AP)

Modo Access point, utilizado para incluir o medidor na rede Wi-Fi de interesse.

11) Restauração dos parâmetros de fábrica (RESTAURA FABRICA)

Restaura os parâmetros de comunicação para o padrão de fábrica.

A seleção do modo é feita pressionando-se as teclas e por aproximadamente três segundos. Dentro de cada modo, a seleção de cada grandeza ou parâmetro é feita pressionando-se as teclas ou e. Os menus são circulares, isto é, após ser selecionada a última grandeza ou parâmetro, será mostrado o primeiro.

*O medidor pode ter comunicação LoRa ou Wi-Fi. Não é possível obter os dois tipos de comunicação no mesmo produto.

Manual do Usuário Konect Revisão 3.1 - Fevereiro / 2023

IHM: Medição de Energia

No modo Energia, é possível medir as grandezas relativas à energia (ativa e reativa, nos quatro quadrantes) e demanda (última integração e máximas). A seleção da grandeza é feita por meio das teclas ou 🕑 .

Display	Descrição
EA+	Energia ativa positiva
EA-	Energia ativa negativa
ER+	Energia reativa positiva
ER-	Energia reativa negativa
DA	Demanda ativa
MDA	Máxima demanda ativa
DS	Demanda aparente
MDS	Máxima demanda aparente

As grandezas disponíveis para leitura são:

Exemplo de leitura:

O **Konect** possui um sistema inteligente de apresentação de valores, isto é, quando o valor de uma determinada grandeza ultrapassar o limite de indicação, automaticamente a escala da unidade será aumentada, permitindo a visualização desta grandeza.

Para visualização do próximo modo, basta pressionar simultaneamente as teclas Se e edurante três segundos.

Manual do Usuário Konect Revisão 3.1 - Fevereiro / 2023

IHM: Medição Instantânea

No modo *Instantâneo* é possível visualizar as grandezas instantâneas (tensão, corrente, potência, etc...). O **Konect** possui um sistema inteligente de indicação que somente mostrará as grandezas relativas ao esquema de ligação selecionado. A seleção da grandeza é feita por meio das teclas o uo.

As grandezas disponíveis para leitura são:

Display	Descrição	Display	Descrição
U0	Tensão trifásica	S0	Potência aparente trifásica
U1N	Tensão linha 1	S1	Potência aparente trifásica
U2N	Tensão linha 2	S2	Potência aparente trifásica
U3N	Tensão linha 3	S3	Potência aparente trifásica
U12	Tensão fase 1-2	PF0	Fator de potência trifásico
U23	Tensão fase 2-3	PF1	Fator de potência linha 1
U31	Tensão fase 3-1	PF2	Fator de potência linha 2
10	Corrente trifásica	PF3	Fator de potência linha 3
11	Corrente linha 1	Freq	Frequência (fase R)
12	Corrente linha 2	THDU1	THD linha 1 – tensão
13	Corrente linha 3	THDU2	THD linha 2 – tensão
P0	Potência ativa trifásica	THDU3	THD linha 3 – tensão
P1	Potência ativa linha 1	THDI1	THD linha 1 – corrente
P2	Potência ativa linha 2	THDI2	THD linha 2 – corrente
P3	Potência ativa linha 3	THDI3	THD linha 3 – corrente
Q0	Potência reativa trifásica	FK 1	Fator K – Linha 1
Q1	Potência reativa linha 1	FK 2	Fator K – Linha 2
Q2	Potência reativa linha 2	FK 3	Fator K – Linha 3
Q3	Potência reativa linha 3		

Exemplo de leitura:

O **Konect** possui um sistema inteligente de indicação, isto é, quando o valor de uma determinada grandeza ultrapassar o limite de quantidade de dígitos, automaticamente a escala da unidade será aumentada, permitindo melhor visualização.

Para visualização do próximo modo, basta pressionar simultaneamente as teclas Se e edurante três segundos.

IHM: Modo Parâmetros

No modo *Parâmetros* é possível configurar os parâmetros relacionados a medição e comunicação RS-485. Se a senha para acesso estiver habilitada, utilize 00021 para acessar. Utilize para incrementar o valor do dígito que estará piscando e para navegar entre os dígitos.

A seleção da informação a ser mostrada é feita por meio das teclas O ou O. Para configurar o parâmetro que está sendo apresentado no display, mantenha as teclas O e O pressionadas por 3 segundos. Utilize Para incrementar o valor do dígito que estará piscando e Para navegar entre os dígitos. A configuração será concluída após clicar O quando estiver no último dígito.

Para sair do menu de configuração, navegue até "PARAMET SAIR" e mantenha as teclas pressionadas por 3 segundos.

Display	Descrição
ТР	Relação do TP (transformador de potencial). Caso utilize-se um TP de, por
	exemplo, 480/120V, deve ser programada a relação 4.
тс	Relação do TC (transformador de corrente). Caso utilize-se um TC de, por
	exemplo, 1000/5A, deve ser programada a relação 200.
TL	Indica qual o tipo de ligação está selecionado.
TI	Tempo de integração para cálculo da demanda, em minutos.
Serial	Velocidade (baud rate) e formato de dados (paridade e stop bits) selecionados
	para a saída serial RS-485.
Endereco	Endereço MODBUS selecionado.
Thresh	Valor de corrente para contagem do horímetro
DIR I.	Apresenta o sentido de leitura da corrente

As informações disponíveis neste modo são:

IHM: Modo Sistema

Este modo permite acesso as informações de número de série, código de erro, número de partidas, versão de firmware e configuração interna do medidor.

Display	Descrição
Num Ser	Número de série do transdutor
Cod Erro	Código de erro. Para saber o significado de cada código de erro, consulte o apêndice A – <i>Código de Erro</i> .
Partidas	Número de vezes que o Konect foi reiniciado.
Versao	Versão de firmware do Konect
CONF INT	Configuração interna do Konect

Manual do Usuário Konect Revisão 3.1 - Fevereiro / 2023

IHM: Modo Configuração Ethernet

No modo *Configuração Ethernet* é possível conferir dados de IP, Máscara de Sub-Rede, Gateway, DNS, DHCP e MAC Address.

A seleção da informação a ser mostrada é feita por meio das teclas Sou . A programação dos parâmetros é feita via interfaces de comunicação.

IHM: Modo Sem Fio

até que o medidor reinicie.

Permite ao usuário escolher o tipo de comunicação sem fio que será utilizada (Wi-Fi ou Bluetooth)

Dentro do menu Sem Fio será possível acessar as opções Bluetooth, Wi-Fi e Sair.

Utilize as teclas 오 ou 오.para selecionar o meio de comunicação sem fio que deseja que o medidor utilize e, para confirmar a seleção, mantenha as teclas 오 e 오 pressionadas simultaneamente

Caso esteja dentro deste menu e não deseje alterar o meio de comunicação, mantenha as teclas e pressionadas simultaneamente quando a opção "SAIR" estiver sendo apresentada no display.

IHM: Modo Configuração Bluetooth

Com a opção de comunicação Bluetooth ativada, este modo apresentará a informação que o Bluetooth está habilitado (ON), a descrição do medidor e MAC Address do Bluetooth.

Caso a opção de comunicação via Bluetooth estiver desabilitada, será apresentado somente a informação de que a mesma está desativada (OFF).

A seleção da informação a ser mostrada é feita por meio das teclas 🔍 ou 🔍.

IHM: Modo Configuração Wi-Fi

Com a opção de comunicação Wi-Fi ativada, este modo mostrará que o Wi-Fi está habilitado (ON), o SSID da rede, configurações de IP, Máscara de Sub-Rede, Gateway, DNS, DHCP (ON/OFF), Mac Address e status da comunicação.

Caso a opção de comunicação via Wi-Fi estiver desabilitada, será apresentado somente a informação de que a mesma está desativada (OFF).

A seleção da informação a ser mostrada é feita por meio das teclas 🧟 ou 🔍.

IHM: Modo Access Point

Com a opção de comunicação via Wi-Fi habilitada, este modo permite que o medidor entre em modo Access Point para ser inserido em uma rede Wi-Fi, utilizando o aplicativo Kron-Fi. Para colocar

o instrumento em modo Access Point, basta pressionar simultaneamente as teclas <a>
 e <a>
 até que a mensagem *"MODO AP"* apareça no display. Em seguida, deve-se pressionar qualquer uma das teclas de

navegação e selecionar a opção *"SIM"*. O próximo passo é manter as teclas e pressionadas simultaneamente, até aparecer a mensagem *"MODO AP ATIVO"* e o LED começar a piscar . O medidor permanecerá neste modo por aproximadamente 3 minutos.

Manual do Usuário Konect Revisão 3.1 - Fevereiro / 2023

IHM: Modo Restaura Fábrica

Para realizar o reset dos parâmetros de comunicação, basta pressionar simultaneamente as teclas e até que a mensagem *"RESTAURA FABRICA"* apareça no display. Em seguida, deve-se pressionar qualquer uma das teclas de navegação e selecionar a opção *"SIM"*. O próximo passo é manter as teclas e pressionadas simultaneamente até que o instrumento reinicie (será apresentada a mensagem **KONECT** e na sequência ocorrerá o retorno ao modo *"MEDIÇÃO ENERGIA"*).

Os parâmetros serão restaurados para o padrão de fábrica conforme tabela:

Parâmetros	Valor Restaurado
Baudrate	9600bps
Formato do caractere	8N2
Endereço Modbus RTU	254
Endereço Modbus TCP	255
Endereço IP (Eth)	10.0.0.1
Endereço Máscara (Eth)	255.0.0.0
Endereço Gateway (Eth)	0.0.0.0
Configuração de IP (Eth)	Estático
Descrição Bluetooth	Konect_xxxxxxx (onde "xxxxxxx" é o nº de série)
Senha Bluetooth	1234
Configuração de IP (Wi-Fi)	Dinâmico (DHCP ON)

Horímetro e Status da Carga

O Horímetro tem como objetivo registrar o tempo em que determinada carga ficou ligada, ou seja, atua como um temporizador digital, monitorando a atividade de máquinas, motores, etc.

Já o Status da Carga, simplesmente mostra se a carga está ligada ou desligada.

Para que o Horímetro inicie a contagem, é necessário que a corrente de pelo menos uma fase esteja acima de um valor pré configurado (threshold). Quando isso ocorre, o instrumento altera o status da carga para "ligada" e o horímetro inicia/continua sua contagem. O valor do threshold é configurado através do software RedeMB ou aplicativo Kron-Fi. De fábrica, o threshold pré-definido é de 2A.

A precisão do Horímetro é de centésimos de hora (1/100). Deste modo, o registro é mostrado com duas casas decimais e tem uma resolução de 36 segundos. Por exemplo, quando for totalizada 1 hora, o registro do horímetro estará mostrando 1.00, que na realidade é 100 x 36 segundos = 3600 segundos.

Outro exemplo é, quando o registro do horímetro estiver mostrando 2.50, significa que a carga está ligada há 2 horas e 30 minutos.

Interface Serial RS-485

Introdução

O **Konect** é equipado com saída serial, padrão RS-485, a dois fios, half-duplex, para leitura e parametrização remota do instrumento.

O protocolo de comunicação utilizado pelo Konect é o MODBUS-RTU, possibilitando que até 247 transdutores trabalhem em uma mesma rede de comunicação.

O **Konect** pode trabalhar com outros equipamentos MODBUS-RTU nesta mesma rede, desde que respeitadas as especificações relativas à velocidade, paridade e bits de início, dados e parada.

O monitoramento remoto do **Konect** pode ser feito através de qualquer equipamento que atue como mestre (MASTER), se comunique através do protocolo MODBUS-RTU e tenha disponível uma interface serial, como por exemplo sistemas supervisórios rodando em PCs, CLPs ou outras unidades de controle.

Características Té	cnicas
	RS-485
Padrão:	Half-Duplex
	2 fios
Protocolo:	MODBUS-RTU
Volocidado	9600 19200
(haud rate) om hes:	38400
(baud rate) em bps:	57600
Baridada (paritu):	Nenhuma,
Bits de Parada	ímpar ou par
Bits de Parada	1 ou 2
(stop bits):	1002
Bits de Início	1
(start bits):	1 L
Bits de dados:	8 bits
Faixa de Endereço:	1 até 247
Distância máxima sem	
necessidade de uso de	1000m
amplificadores de sinal:	
Quantidade máxima de	
transdutores sem	27
necessidade de uso de	52
amplificadores de sinal:	

Diagrama de Ligação

A interface serial RS-485 do Konect possui 3 (três) pontos de conexão: "+", "-" e "GND" (terra).

A forma correta de se ligar os instrumentos em rede é do tipo "ponto-a-ponto", isto é, do mestre (CLP, PC, conversor) efetua-se a conexão ao primeiro medidor, deste primeiro efetua-se a conexão ao segundo e assim por diante.

Abaixo é esquematizada uma aplicação típica de medidores utilizando um conversor RS-485 para USB ou Ethernet para ligação ao PC e uso do software **RedeMB**.

RS-485

Borne	Descrição
" +"	DATA-
"_"	DATA+
" <u>+</u> "	GND (terra)

Recomendações

- Utilizar cabo par trançado 2x24 AWG ou 3x24 AWG. Este cabo deverá possuir blindagem e impedância característica de 120Ω.
- Conectar dois resistores de terminação de 120Ω em cada extremidade, ou seja, um na saída do conversor e outro no último instrumento instalado na rede. Conectar dois resistores de polarização de 470Ω utilizando fonte externa de 5 Vcc conforme diagrama da ilustração anterior.
- Caso a opção seja a não utilização dos resistores de polarização, eliminar também os resistores de terminação. É importante ressaltar que, isto implicará em perda da qualidade do sinal de comunicação, podendo inclusive ocasionar falhas na comunicação.

- Ligar um dos fios disponíveis do cabo ao terminal "terra" da RS-485 dos medidores, e, simultaneamente, conectar apenas uma das pontas deste fio ao ponto de terra da instalação. Não deve ser utilizada a blindagem do cabo para conexão ao terminal "terra" dos instrumentos.
- Conectar uma das pontas da blindagem ao terra da instalação.
- Acima de 32 instrumentos ou distância superior a 1000 metros, deve ser utilizado um amplificador de sinal. Para cada amplificador de sinal instalado, será necessário adicionar os resistores de terminação e polarização conforme diagrama de ligação RS-485.

Conversores

Tem como função converter um determinado meio físico a outro. Os modelos mais comuns de se encontrar no mercado são conversores de RS-485 para USB ou Ethernet.

Para permitir a comunicação do PC com os transdutores, é necessário um conversor, neste caso, de RS-485 para outro padrão (USB, Ethernet, etc...).

A **KRON Instrumentos Elétricos** comercializa um conversor de RS-485 para USB, o **KR-485/USB**. Para informações sobre orçamentos e prazos de entrega entre em contato com nosso setor comercial pelo e-mail <u>vendas@kron.com.br</u> ou pelo telefone (11) 5525-2000.

Problemas de Comunicação

Este manual possui um capítulo sobre *Solução de Problemas*, um tópico dedicado especialmente a dúvidas e problemas comuns na utilização da interface serial dos medidores **Konect**.

Quando em dificuldade na implementação de um sistema de automação utilizando a interface serial do Konect, não hesite em consultar esta parte da documentação, pois a maioria das dúvidas ou problemas normalmente encontrados são esclarecidos neste capítulo.

Configuração de IP em uma LAN

Os medidores Konect com interface de comunicação Ethernet utilizam como padrão de fábrica o endereço de IP 10.0.0.1.

O endereço de IP poderá ser alterado conforme interesse ou necessidade do usuário. Podem ser configurados os parâmetros de endereço IP, Gateway e Máscara de Sub-Rede.

Estando com um cabo de rede conectado ao Konect, realize os procedimentos abaixo para estabelecer comunicação entre computador e medidor.

Para realizar a comunicação, será necessário que o medidor e computador estejam no mesmo grupo de IP. Para isto, acesse:

> Painel de Controle > Rede e Internet > Central de rede e compartilhamento

Clique em conexão local > Propriedades \geq

Status de Cone	xão local	×	
Geral			
Conexão —			
Conectividade	IPv4:	Internet	
Conectividade	IPv6:	Sem acesso à Internet	
Status da Míd	ia:	Ativo	
Duração:		08:59:34	
Velocidade:		100,0 Mbps	
Detalhes			
Atividade			
	Enviados —	Recebidos	
Bytes:	233.647.713	684.020.997	
Propriedad	es 💡 Desati	var Diagnosticar	
		<u> </u>	
			1

> Na janela que surgirá, na guia geral, selecione Protocolo TCP-IP versão 4 e clique no botão Propriedades.

Propriedades de Conexão local
Rede Compartilhamento
Conectar-se usando:
Realtek PCIe GBE Family Controller
Configurar
Esta cone <u>x</u> ão utiliza os seguintes itens:
Compartilhamento arquivos/impressoras para redes Mic
Protocolo TCP/IP Versão 6 (TCP/IPv6)
Driver de E/S do Mapeador de Descoberta de Topoloc TII
Instalar Desinstalar Propriedades
Descrição
Transmission Control Protocol/Internet Protocol. Protocolo padrão de rede de longa distância que possibilita a comunicação entre diversas redes interconectadas.
OK Cancelar

> Na sequência, realize as alterações para que o PC esteja no mesmo grupo de IP do medidor.

O Konect sai de fábrica com as seguintes configurações de rede

IP	10.0.0.1		
Máscara de Sub-rede	255.0.0.0		
Gateway	0.0.0.0		

ribuídas automaticamente se a rede Caso contrário, você precisa solicitar gurações IP adequadas.
naticamente
192.168.1.55
255 . 255 . 255 . 0
192 . 168 . 1 . 250
lores DNS automaticamente
de servidor DNS:
192.168.1.4
da Avançado

Acesso à Página Web

- > Para alterar o IP do medidor via página Web, acesse o browser de Internet de seu PC e digite o endereço de IP do medidor. Na tela abaixo, pressione o botão "Configura Servidor".
- Insira a senha de acesso:

	001/	.0 + ₿ C	X 🔮 Kron Medidores X	- ∎ - ∞
ineer. Crandoca Elfittude Enzyska o Denvalor Branna e Manna Branna e Manna Branna e Manna Comfugue Sandur Denvalor e Sandur Denvalore e Sandur	KRO Senha de Acesso			
				*

Para os instrumentos com versão de firmware anteriores a 2.4, a senha é 2 Para instrumentos com versão de firmware a partir da 2.4, a senha é 1234

Após esta ação, surgirá o menu de edição:

		A CONTRACTOR OF A	
C 🔿 🖓 🕝 http://1	0.0.01	,D + B C X GKran Medidares ×	↑ ★¤
Home Grandezas Extincas Energias e Dominato Hentin Configuração Altorir Configuração Zonir Grandezas Configura Servidor Menorei di filasas Entrados e Daidas	Servider Parametrização PP: [000] Mascare: 255:255:25 ATE	0 Gateway 192 101 104 250	
rar Grandezae nifigura Servidor enoria de Massa tradas e Saidas	Paranetização 19: 1000 T Mascare 255 255 25 14: 17 14: 17	0 Gateway 192 108 104 250	

- Realize as configurações de IP, máscara de sub-rede e gateway de acordo com as características da rede de destino.
- > Confirme a mudança e realize o teste de leitura por browser com o medidor conectado à rede de destino.

Deve ser utilizada a senha 1234 para acesso aos três menus.

Softwares

A Kron disponibiliza os softwares RedeMB e RedeMB TCP, de licença livre, que podem ser utilizados nos sistemas operacionais Windows. Para obtenção de suas versões mais atualizadas, acesse o site <u>www.kron.com.br</u> ou solicite pelo e-mail <u>suporte@kron.com.br</u>.

O RedeMB tem a função de comunicar com os multimedidores da Kron, possibilitando efetuar leituras e configuração dos instrumentos com RS-485 fabricados pela Kron Medidores. Já o RedeMB TCP realiza comunicação com os medidores Kron que possuem saída de comunicação Ethernet e/ou Wi-Fi.

RedeMB TCP (Ethernet e Wi-Fi)

Passo a passo – Instalação:

Para utilizar os softwares RedeMB TCP/IP e BDE Admin, será necessário possuir privilégios de administrador do computador.

Em caso de utilização em campo, recomenda-se um notebook com Windows a partir da versão 7.

1. Instalando o software RedeMB TCP/IP

> Dentro da pasta "Disk 1", localize o arquivo "SETUP.EXE" e o execute

Será exibida a tela de apresentação do instalador, sendo necessário clicar em **Next** para continuar a instalação.

Será exibida a tela para confirmação da instalação, clique em **Install** para continuar.

Será iniciada a instalação dos arquivos, e após o termino será exibida a tela de conclusão da instalação. Confirme a opção clicando em Finish.

Passo a passo – Utilização:

Acesse o RedeMBTCP, utilize como senha nork0.

RedeMB TCP		
Dispositivo Zerar Sistema	Manutenção Ajuda	
	Senha Digite a serha de acesto	

c) Para adicionar o primeiro multimedidor, selecionar a opção Dispositivo / Adicionar. Serão exibidas as opções: Manualmente e Localizar na Rede. Caso selecione a opção "Manualmente", será exibida a tela de adição de instrumento. Preencha os campos com o endereço de IP e número de série do medidor e uma descrição para identificação do instrumento no software:

Adicionar	
Endereço IP	I
Série	
Descrição	
📬 Adicio	onar 🗙 Cancelar 💦

Caso selecione a opção "Localizar na Rede", será exibida a tela de adição de instrumento. Serão apresentados os medidores conectados à rede, escolha o equipamento desejado, defina uma descrição ao mesmo e clique em "Adicionar".

6	Busca dispositivo na re	de TCP/IP			×
Г	Dispositivos da Rede	1	1	_	
	Endereço IP	Endereço MAC	Nº de Série		
	192.168.1.201	70:B3:D5:72:D0:69	10	IP do dispositivo selecionado:	192.168.1.201
	192.168.1.80	70:B3:D5:72:D4:6F	1961804	Endereco Mac:	70:B3:D5:72:D0:69
	192.168.1.241	30:AE:A4:26:74:0C	239	Endereço mac.	
				Número de Série:	0000010
				Descrição:	KONECT_0000010
					,
		Descus Disessitive	1	+-	A distances
]	+ 2	Adicionar

Após o cadastro, o medidor estará presente na tela inicial do software com a descrição dada anteriormente. Clique em cima da descrição do medidor e em seguida clique em "Ler".

Kan RedeMB TCP			_	
Dispositivo Memória de massa Zerar Configuração	Ajuda			
SISTEMA Descrição Endereço IP № de Série KONECT_0000010 192.168.1.201 10	Parâmetros Série Endereço IP Descrição TP KE TI Serial Memória de Massa 1 U 2	0000010 192.168.1.201 KONECT_0000010 1.00 TC 0 TL 15 9600 1 3 P	100,00 0	5 EA+
	11 12	13	14	15
	16 17	18	19	20
	IA 5 minu	utos MA Circular		
		h Ler 🚀 Zerar	Cy Ler MM	▶ ?
			Conecta	do

Г

٦

> Na janela seguinte, ative a comunicação na chave amarela.

					— Bo	otão pa	ara ativar					
				/		Jinum	LaçaU					
Ler				/								
< + + >		A 🔏	Ĺ		<u>D</u> ELTA	A Agru	/Agre Min/	Max		à	🖉 Zerar 🖠	E Fechar
Série Ender	reço IP	Des 20 Kr	crição	00000	01		Códig BO	 30 Fir	mware Partic	Jas 5		
TP		KE		_00000		TI 15	_	10	Sequência l	Ponto Flu	utuante IFXP	
Instantâneos Ene	ergias / D	emandas D	eltas di	e Energia	as Entrada	as e Saío	Jas Horíme	tro St	atus	1.0		
		Trifásico			L1	_	L2	,	L3			
	U	0,000	mV		0,000	mV	0,000	mV	0,000	mV		
	1	0,000	mΑ		0,000	mΑ	0,000	mΑ	0,000	mΑ		
	Р	0,000	mW		0,000	m₩	0,000	mW	0,000	mW		
	Q	0,000	mVAr		0,000	mVAr	0,000	mVAr	0,000	mVAr		
	s	0,000	mVA		0,000	mVA	0,000	mVA	0,000	mVA		
	FP	0,000			0,000		0,000		0,000			
	F	0,0	Hz									
	U Máx	413,124	V	THD U	0,00	%	0,00	%	0,00	%		
	l Máx	0,000	mΑ	THD I	0,00	%	0,00	%	0,00	%		
	In:	0,000	mΑ		L12		L23		L31			
				U	0,000	m∨	0,000	mV	0,000	mV		
Lendo medições inst	antâneas	3						Cor	nectado	0	9/02/23	10:27 📼

A tela de leitura é separada por abas, onde as informações são disponibilizadas nas seguintes categorias:

- 1. Instantâneos: Apresenta as medições instantâneasque estão sendo medidas;
- 2. Energias / Demandas: Apresenta os valores acumulados de energia nos quatro quadrantes e as demandas calculadas;
- 3. Deltas de Energias: Cálculo de deslta das energias com base no intervalo de envio de dados via MQTT, LoRa ou intervvalor de armazenamento da memória de massa.
- Entradas e Saídas: Apresenta o status das entradas e saídas digitais, contador e largura dos pulsos das entradas digitais, além de botões liga/desliga das saídas digitais e botão para zerar os contadores;
- 5. Horímetro: Apresenta o contador de horas de funcionamento, status da carga e botão para zerar o horímetro;
- 6. Indicação do Status do medidor e códigos de erro.

Acessando o menu de configurações

Na tela inicial do software, clique com o botão direito do mouse no medidor e selecione a opção "alterar".

RedeMB TCP								_		×
Dispositivo Me	mória de massa Zerar	Configuração	Ajuda							
SISTEMA Descrição KONECT_000001	Endereço IP 192 168 1 201 Ler Alterar Alterar IP Cadastrac Remover Zerar	Nº de Série 10 do	Parâmetros Série Endereço IF Descrição TP KE TI Serial	2	0000010 192.168.1.2 KONECT_0 1.00 0 15 9600	201 000010 TC TL	100,00 0			
			- Memória de M	lassa						
			1 U	2	I 3	3 P	4 FP		5 EA+	
			6	7	٤٤	3	9	1	0	
				12		3		1	5	
			IA 5	minu	utos MA	8] Circular	19	Ę	Relog	io
					🔁 Ler	🚀 Zerar	<u></u>	.er MM		N?
Alterar parâmetros o	do dispositivo						Co	nectado		

Na janela que surgirá, selecione o medidor e clique em "Selecionar".

Alterar - Selecion	e dispositivo	
Endereço IP	Descrição	Nº de Série
192.168.1.201	KONECT_0000010	10
1		
	Selecionar Y Cancelar	N2
		7:

Assim como na tela de leitura, a tela de configurações possui abas, separando as configurações por categorias.

Configurações Gerais

http://www.alterar	×
Modelo KONECT	Série 0000001 Firmware 8.5
Configurações Gerais Comunicação	sem fio SNTP IoT Relógio Serial
Código	BO
Endere	ço IP: 192.168.1.20 Atualiza Cadastro
Endere	ço 255
Descrig	5ão KONECT_0000001
FC	
TP	1.00
TC	100,00
KE	
TL	0 Tino de Ágrupamento :
TI	15 C Grupo I Subgrupo
Corrent	
Seq. P	
Horíme	tro
l hresh	oia: [1,00
(*)	Alterar Cancelar

- Endereço IP altera o IP da comunicação via Ethernet do medidor .
- Endereço altera o slave ID da comunicação via Ethernet no RedeMB TCP e o endereço Modbus quando utilizado RedeMB (RS-485).
- Os menus TP e TC correspondem a fatores multiplicativos aplicáveis quando as medições utilizam transformadores adicionais para adequação de nível de tensão (TP) ou corrente (TC). No Konect, a configuração padrão para estes dois parâmetros é "1".
- O parâmetro TL corresponde ao código numérico que representa o tipo de ligação definido. No exemplo, o valor "0" corresponde à conexão Estrela – 3 Fases+Neutro.
- O parâmetro TI define o tempo de integração para o cálculo de demanda; o KE não é utilizado para este modelo, deve ser mantido como "0".
- O campo "Relógio" permite modificação de data e horário direta, ao ativar a opção "Manual". Para trabalhar com a referência fornecida pelo relógio do computador, é preciso marcar a opção "PC".
- O campo **Corrente** possui um flag, onde é possível realizar a inversão da leitura de corrente.
- O parâmetro Seq. PF corresponde a alteração da sequência do ponto flutuante, permitindo configurar a sequência de acordo com o sistema de leitura utilizado.
- O parâmetro Tipo de Agrupamento permite selecionar se o

Comunicação sem fio

🔛 Alterar			×
Modelo	KONECT	Série 0000001 Firmware 8.5	
Configurações G	aerais Comunicação sem fio SNTP	loT Relógio Serial	
Ativo:	Wifi		
	Wi-Fi	Bluetooth	
SSID:	KRON	Descrição: Konect_0000001	
Senha:	******	Senha: Konect_0000001	
Ver. Módul	o Fw 2.2.1.0	Mac: E8 9F 6D AF 25 66	
IP	192 168 1 20		
Máscara	255 255 255 0		
Gateway	192 168 1 250		
Мас	E8 9F 6D AF 25 64		
DHCP	ON 💌		
DNS:	🗌 Habilitado 208 67 222 222		
	🔀 Alterar		

- O campo "Ativo" permite configurar qual comunicação sem fio será utilizada (Wi-fi ou Bluetooth) ou desabilitar a comunicação sem fio.
- No campo Wi-Fi são configurados os parâmetros de rede referentes a comunicação Wi-Fi do medidor.
- Os dois campos apresentam as configurações de rede atuais do instrumento. O menu DHCP permite alterar o modo de trabalho entre atribuição de IP por DHCP – opção ON – ou operação com IP fixo – opção OFF.
- O campo DNS, se habilitado, possibilita a configuração de DNS de preferência do usuário.
- Na configuração Bluetooth, é possível configurar a descrição e senha de pareamento do Bluetooth.

<u>SNTP</u>

SNTP:	Habilitado
Fuso Horário:	-3 🗣 hora(s)
Int. de Sincronismo	720 🜩 minuto(s)
Servidor SNTP:	a.st1.ntp.br

O campo **Configuração SNTP**, se habilitado, permite utilizar referência de servidor remoto para atualização de relógio, como configuração de servidor de tempo, intervalo de sincronismo e fuso horário do local.

<u>IOT</u>

🔚 Alterar					×
Modelo KO	NECT		Série	1961804	Firmware 7.9
Configurações Ger	ais Ethernet Com	unicação sem fio SNTI	P IoT Re	elógio Serial	Entradas e saídas
loT: Ha	abilitado	•	Interval	o de envio: 15	minuto(s) Apagar Buffer
MQTT Certifica	idos				
Broker:	Padrão/AWS		-		🔽 Manter conexão ativa
URL:	mqtt.tago.io				✓ KronCloud
Descrição/ID:	Produção Geral				TLS
Porta:	1883				
Tópico:	tago/data/post				
Nome de usuário	c				
Token/Senha:	4151fvsd0redfhbdg	njntyfn05bd 1sgfwesvbtr	infdvrs		
Grandezas dispo	níveis:		Selecio	nadas (10/20):	
0004 · Tensão F	ase/Fase (A-B)	^	0002 - 1	ensão Trifásic	a (V)
0006 · Tensão F	ase/Fase (B·C) ase/Fase (C·A)		0016 - 0	reguência Linh	a (A) a 1(Hz)
0010 · Tensão Li	nha 1 (V)	· · · ·	0034 · F	Potência Ativa 1	Trifásica (W)
0012 · Tensão Li 0014 · Tensão Li	nna 2 (V) nha 3 (V)		0042 · F	Potência Meativ Potência Aparei	nte Trifásica (VA)
0018 - Corrente o	le Neutro (A)			ator de Potênc	tia Trifásico
0020 - Corrente L 0022 - Corrente L	.inha 1 (A) .inha 2 (A)		0200 - 8	nergia Ativa Pi nergia Reativa	a Positiva (kwn) Positiva(kVArh)
0024 - Corrente L	inha 3 (A)	¥	0210 - 0) emanda Ativa	(kW)
		🏹 Alterar	×	Cancelar	

- O campo **SNTP** permite configuração de servidor de tempo, intervalo de sincronismo e fuso horário do local.
- O campo **IOT**, permite habilitar a função IoT, configurar broker, porta de comunicação, tópico de publicação, informações sobre o dispositivo, application Token e intervalo de transmissão de informações.
- O campo Intervalo permite configurar o intervalo de envio das grandezas para a plataforma IOT.
- O flag Manter Conexão Ativa quando selecionado, mantém a conexão do medidor com a rede independente do intervalo de envio configurado. Quando não selecionado, o medidor se mantém desconectado quando o intervalo for superior a 10 minutos, conectando apenas no momento do envio das grandezas para a plataforma IOT.
- O flag **TLS** quando selecionado, habilita a criptografia dos dados enviados para a plataforma IOT.
- O flag KronCloud quando selecionado, preenche os dados da URL, Porta e Tópico com o padrão utilizado na plataforma da Kron.
- O campo Grandezas Disponíveis permite a seleção das grandezas que serão enviadas ao broker MQTT.

<u>Relógio</u>

Data:	13/02/2023 🚦	
Hora:	11:08:30 🗧	
О Ма	anual 💽 PC	

Permite a configuração da data e hora configurados no medidor, sendo possível configurar manualmente ou definir que o horário do computador seja utilizado como referência.

<u>Serial</u>

Velocidade	Formato
· 9600	C 8N1
C 19200	
C 38400	C 801
C 57600	C 8E1

Grandezas IOT

• Permite configurar no medidor o baud rate e formato de dados utilizados na comunicação via RS-485.

- O campo **Grandezas IOT** permite configuração de até 20 grandezas para transmissão via MQTT ao servidor externo. A seção **Disponíveis** indica as grandezas que podem ser programadas e a seção **Selecionadas**, as grandezas que já estão definidas para envio.
- O botão Adicionar inclui, na seção Selecionadas, uma grandeza pré-escolhida na seção Disponíveis.
- O botão **Remover** exclui, na seção **Selecionadas**, uma grandeza já definida anteriormente.

OBS: As funções desta área ficam disponíveis somente após habilitar os campos "Configuração SNTP" e "Plataforma IOT".

Para confirmar as alterações, é preciso pressionar o botão **Alterar.** Se não houver interesse em modificar as configurações, basta pressionar **Cancelar.**

🌋 Alterar	🗙 Cancelar

RedeMB (RS-485 e Bluetooth)

Passo a passo – Instalação:

- a) Baixe o software desejado no site da Kron através do link: https://kron.com.br/softwares/
- b) Descompacte a pasta baixada, localize o arquivo "SETUP.EXE" e o execute. Será exibida a tela de apresentação do instalador, sendo necessário clicar em **Next** para continuar a instalação

Figura a - Instalador do RedeMB

c) Clique em instal para iniciar a instalação do software.

RedeMB 6.40 - InstallShield Wizard	
Ready to Install the Program The wizard is ready to begin installation.	E
Click Install to begin the installation. If you want to review or change any of your i	nstallation settings, dick Back. Click Cancel to
exit the Wizard.	
InstallShield	
	< Back Install Cancel

Figura b – Tela de instalação

d) Será exibida a tela de confirmação de instalação, confirme clicando em finish.

Figura c – Tela de encerramento da instalação

Passo a passo – Utilização:

- a) Após o computador ser reiniciado, acesse o RedeMB por meio do atalho criado no "Menu Iniciar".
- b) Será solicitada uma senha para acesso do software, conforme a figura d. A senha padrão de fábrica é **nork0**. Entre com a senha e clique em **OK** para iniciar o RedeMB.

Figura d – Tela de abertura do RedeMB

c) Na primeira inicialização do RedeMB será necessário realizar a programação da interface serial do PC, compatibilizando velocidade e formato de dados com os programados no medidor e clicando em **OK** para continuar.

 d) Também será necessário configurar o diretório para salvamento dos arquivos de qualidade de energia e se os arquivos serão salvos em formato criptografado ou arquivo de texto/Excel (utilizado somente com a linha Mult-K NG).

Arquivos exportados	
 Formatos para exportação de arquivos do Prodist Arquivo Criptografado (.km) Arquivo Descriptografado (txt ou csv) 	Definir o formato em que o arquivo
Diretório dos arquivos exportados (XMLs salvos automaticamente) Salvar Cancelar	
	Clique neste botão para definir o diretório.

NOTA: O **Konect** sai de fábrica parametrizado com a velocidade de 9600bps e formato de dados 8N2.

Caso a porta serial seja inicializada com sucesso, será exibida a seguinte tela:

Rede MB							X
Dispositivo	Qualidade de Energia	Zerar	Sistema	Manutenção	Ajuda		
						KRO	Ν
						MEDIDOR	ES
						MODBUS CO	M4 9600 8N2

Figura f – Tela principal

e) Para adicionar o primeiro multimedidor, selecionar a opção Dispositivo / Adicionar. Serão exibidas as opções: Manualmente, Dispositivo Único e Localizar na Rede. Caso selecione a opção "Manualmente", será exibida a tela de adição de instrumento, devendo-se clicar em Adicionar após o preenchimento dos dados:

	Adicionar manualmente	instrumento localiza-se na etiqueta afixada na
O endereço deve ser escolhido entre 1 e 247.	Série Equipamentos Endereço Cikron trilho Din Cikron trilho Din Cikron 10	sua parte superior (considerar apenas os últimos 7 dígitos).
A descrição é uma	Descrição	Escolha o tipo de instrumento que está sendo adicionado.
identificação do medidor, armazenada	Figura g – Tela de adição de instrumento	Para o Konect, escolha "Linha Mult-K".
apenas no banco de dados do RedeMB.		

- A opção "Dispositivo Único" incluirá o medidor encontrado na rede e configurará automaticamente o endereço deste medidor como 1.
- A opção "Localizar na Rede" fará uma busca em todos endereços possíveis e, caso seja encontrado algum instrumento, será mostrado a opção para adicionar o medidor. Caso confirme esta opção, o software apresentará a tela da "figura g".

Após as etapas de mencionadas acima, todos os processos seguintes seguem o mesmo padrão utilizado no Software RedeMB TCP

Aplicativo Kron-Fi

O Kron-Fi é um aplicativo gratuito disponível para dispositivos Android, que possibilita integração de medidores com comunicação Wi-Fi a uma rede existente. Também pode ser utilizado como ferramenta de leitura e configuração dos medidores já conectados, via Bluetooth, ou por redes Ethernet ou Wi-Fi.

Passo a passo – Utilização:

Após o Kron-Fi inicializar, serão verificadas as permissões necessárias para a execução, solicitando confirmação ao usuário quando necessário. Para incluir algum medidor na rede, será necessário que o dispositivo móvel esteja com a localização (GPS) e o Wi-Fi ativados e os dados móveis desabilitados. Além de estar com o Wi-Fi ativado, o dispositivo móvel deve estar conectado na rede Wi-Fi em que se pretende conectar o medidor.

O aplicativo iniciará na seguinte tela:

Em qualquer tela do aplicativo, é possível acessar a barra de menus. Esta barra possui as seguintes opções:

Leitura:

Nesta tela é possível selecionar o tipo de comunicação utilizada (Wi-Fi, Bluetooth ou Access Point), o medidor que deseja realizar a leitura e visualizar os valores medidos.

Manual do Usuário Konect Revisão 3.1 - Fevereiro / 2023

Ajustes:

Nesta tela é possível configurar os parâmetros elétricos do medidor como TC, TP e TL, data e hora e o tipo de comunicação sem fio que será utilizado pelo medidor.

Nuvem:

Nesta tela é possível configurar os parâmetros IoT do medidor como Broker MQTT, Tópico e Token.

Wi-Fi:

Nesta tela é possível inserir um medidor que esteja em modo AP na rede Wi-Fi que o dispositivo móvel está conectado.

Sobre:

Nesta tela é possível visualizar a versão do aplicativo, Rede Wi-Fi em que o dispositivo móvel está conectado e IP atribuído ao mesmo.

Tela de leitura:

11:46 🖬		•*•	∍₹⊿₽	59%
Kron-F	i Leitura	Ф	Ģ	
J D	tendo valores da sequencia de p	ponto f	lutuante	
(;• ≶	/ifi			
	LOCALIZAR MEDIDO	R	_	
	Medidor conectad	do		
1	NS_00000239 IP_192.1	68.1	.23	
	FINALIZAR LEITURA	4		
Inve Fase	Status do medi rsão de Fase ou F	dor alt	a de	
	Status do Wif Funcionamento Co	fi rret	to	
	Firmware / Mód 6.8 / 2.2.0.	ulo 0		
DEMANE E ENERG	DAS TENSÕES IAS CORRENTES POTÊNCIA			н
VO	403,68V			
V1	233,11V			
V2	232,73V			
V3	233,36V			
V12	0, <u>00</u> V			
V23	0,00V			
V31	0,00V			
10	0,00A			

- Para iniciar a leitura, será necessário escolher o tipo de comunicação utilizada (Wi-Fi, Bluetooth ou Access Point).
- Clique no botão "LOCALIZAR MEDIDOR" e selecionar o medidor que deseja realizar a leitura.
- Após a escolha do tipo de comunicação e do medidor, clique no botão "INICIAR LEITURA". Os valores serão apresentados e, será possível obter as informações sobre o status do medidor, status da comunicação Wi-Fi, versão de firmware e as abas para leitura, que serão apresentadas conforme modelo do medidor.
- Após iniciar a leitura, o botão "INICIAR LEITURA" passa a indicar a mensagem "FINALIZAR LEITURA", sendo utilizado para encerrar a comunicação com o medidor.

.

Tela de Ajustes:

08:20	• \$ 🛯 🍸 🖉 🕇 🖓 • 77%
Kron-Fi Ajustes	\$ \$!
↑ Obtendo parar	netros do horimetro
NS_000002	239 IP_192.168.1.23
ATUALIZAR	SALVAR
Parâmet	ros Elétricos
TP:	1.00
TC:	50.00
KE:	0
TI:	15
TL:	00 - Trifásica Estrela (3F + N)
Da	ta e Hora
Data:	04/05/2021
Hora:	08:18:35
He	orímetro
Threshold:	0.00
B.	luetooth
Descrição:	Konect_0000239
Senha:	1234
Comunio	cação sem Fio
⊖ Wifi	
O Bluetooth	
O Desativado	
Desativado	
SAL	VAR CONEXÃO
III 🗘	a 👻 III
Leitura Ajustes	Nuvern WiFi Sobre

- Nesta tela é possível realizar alteração dos parâmetros de TP, TC TI, Tipo de Ligação, data e hora, threshold do horímetro, senha e descrição da conexão via Bluetooth, além de modificar o tipo de comunicação sem fio que será utilizado pelo medidor.
- Após definir as alterações, basta clicar em "SALVAR" para confirmar. •
- Caso seja alterado o tipo de comunicação sem fio, será necessário clicar em • "SALVAR CONEXÃO" para confirmar.

MANUAL DO USUÁRIO KONECT MEDIDORES REVISÃO 3.1 - FEVEREIRO / 2023

Tela Nuvem:

08:45	• ¥ 🛛 🗑 📶 72%
Kron-Fi Nuvem	\$ \$!
► Obtendo para	metros de sntp
NS_000002	239 IP_192.168.1.23
ATUALIZAR	SALVAR
LIM	IPAR CAMPOS
Configur	rações de IOT
O Habilitado	Desabilitado
URL	4 2 65 525
Porta	1 a 65.535
Dispositivo	
Token	
Descrição	
Int. min.	15
☐ KronCloud	
Criptografi	a TLS
Manter cone	exão ativa com broker
CONFIGUR	AR GRANDEZAS IOT
Configur	rações de SNTP
⊘ Habilitado	, Desabilitado
URL/SNTP	a.st1.ntp.br
Fuso/SNTP	-3
Sinc./SNTP	720
Leitura Ajustes	Nuvem WiFi Sobre

Esta tela permite as configurações dos parâmetros IoT do medidor, onde:

- Configurações IoT: Habilita a função de envio de dados para nuvem. Quando habilitado, os campos para preenchimento dos dados ficarão disponíveis para edição e o botão para selecionar as grandezas a serem enviadas ficará ativo.
- KronCloud: Quando habilitado, configura os campos com o broker MQTT padrão da Kron.
- Criptografia TLS: Quando habilitado, os dados são enviados com criptografia ٠ para a nuvem.
- Manter Conexão Ativa com o Broker: Por padrão, quando o intervalo de • envio das grandezas para a nuvem for maior que 10 minutos, o instrumento se conecta à rede somente no momento do envio. Ao habilitar a conexão ativa, o instrumento sempre ficará conectado, independente do intervalo de envio configurado
- Configurações de SNTP: Quando habilitado, permite configuração de • servidor de tempo, intervalo de sincronismo e fuso horário do local.

Tela apresentada ao clicar no botão "CONFIGURAR GRANDEZAS IOT"

08:45	• \$ 👁 🛒 🚄 🕯 72%
Kron-Fi Grandezas	÷ ;
Grandezas Io	oT 20/20
LIMPAR CAMPOS	CONFIRMAR
Tensão Trifásica (V)	
Tensão Fase/Fase (A-B)	✓
Tensão Fase/Fase (B-C)	<u>~</u>
Tensão Fase/Fase (C-A)	~
Tensão Linha 1 (V)	
Tensão Linha 2 (V)	
Tensão Linha 3 (V)	
Corrente Trifásica (A)	
Corrente de Neutro (A)	
Corrente Linha 1 (A)	
Corrente Linha 2 (A)	
Corrente Linha 3 (A)	
Freqüência Linha 1(Hz)	
Freqüência Linha 2(Hz)	
Freqüência Linha 3(Hz)	
Freqüência Linha 1(IEC -	10s)
Leitura Aiustes Nuvem	WiEi Sobre

-

<u>Tela Wi-Fi:</u>

- Esta tela é destinada ao cadastro de medidores na rede Wi-Fi de interesse.
- Para isso, será necessário que o medidor esteja em modo Access Point e que o dispositivo móvel esteja com o GPS ativado, conectado à rede Wi-Fi de interesse e com os dados móveis desabilitados.
- Após atender aos requisitos citados acima, clique em "PROCURAR" para encontrar os dispositivos que estão em modo Access Point.
- Após o aplicativo encontrar o medidor, selecione a rede Wi-Fi e insira a senha da mesma.
- Para confirmar a adição do medidor à rede selecionada, clique em "CONFIGURAR" para prosseguir com o processo.

ATENÇÃO: O acesso à esta tela ficará bloqueado se o aplicativo estiver conectado a um medidor.

Disp	Dispositivo para usar com Kron-Fi		
•	KRON_3P_0000000239		
	CANCELAR	CONECTAR	

Após clicar em "CONFIGURAR", o aplicativo iniciará o cadastro e surgirá esta janela, sendo necessário confirmar o processo, clicando em "CONECTAR"

Atenção

Sucesso na configuração do WiFi. Aguarde um momento até o medidor se conectar a rede.

OK

 Ao concluir o processo de adição do medidor na rede Wi-Fi, o aplicativo apresentará a mensagem de confirmação.

Solução de Problemas

O intuito deste capítulo é apresentar respostas rápidas a problemas ou dúvidas que frequentemente surgem na utilização do **Konect**. Persistindo as dúvidas, sinta-se à vontade para contatar nosso *Suporte Técnico*.

1) Problema: O medidor está com o display apagado.

Solução:

Verifique:

- A conexão de alimentação externa foi feita de forma correta? A alimentação deve ser feita conforme a identificação do painel;
- A tensão que está chegando ao transdutor está adequada para seu funcionamento?

Se após todas as verificações, constatar-se que a ligação está correta, entre em contato com o suporte técnico. Caso o medidor tenha sido alimentado de forma incorreta (por exemplo, 380Vca ao invés de 110Vca ou 220Vca), o mesmo pode ter sido danificado.

2) Problema: O medidor não está medindo demanda, embora os valores de fator de potência e potência estejam coerentes.

Solução:

No caso dos modelos para medição indireta (1A ou 5A), verifique se os TCs (transformadores de corrente) não estão invertidos, isto é, se o fluxo de corrente não está ao contrário do que deveria ser. Note que os TCs têm uma marcação P1/P2 referente ao primário e S1/S2 referente ao secundário. Quando houver corrente passando de P1 para P2, haverá, no secundário, corrente passando de S1 para S2.

Assim sendo, o posicionamento incorreto do primário, ocasionará uma medição de potência ativa negativa, impossibilitando o cálculo da demanda. Outro ponto a ser verificado é se a constante TI está programada com valor maior do que zero.

Para o Konect de medição direta (63A), verifique se os cabos estão no sentido adequado.

3) Problema: Uma das fases está zerada.

Solução:

Verifique qual foi o TL (tipo de ligação) parametrizado. De fábrica, o instrumento sai parametrizado como TL 00 (Estrela – 3 elementos 4 fios), no entanto este parâmetro pode ser alterado. Verifique também, através de outro instrumento, se efetivamente existe sinal chegando ao medidor.

4) Problema: A tensão e/ou corrente estão sendo medidas incorretamente.

Solução:

Verifique:

- As constantes TC (transformador de corrente) e TP (transformador de potencial) foram parametrizadas corretamente?
- O esquema de ligação foi escolhido de forma adequada?
- A tensão e ou corrente que chega ao medidor está de acordo com o esperado?

5) Problema: O fator de potência e/ou as potências estão sendo medidos incorretamente.

Solução:

Este é um típico sinal de ligação incorreta, no que diz se refere a respeitar o "casamento" entre tensão e corrente, isto é, manter a mesma sequência adotada para ligação da tensão, também na ligação da corrente.

- As constantes TC (transformador de corrente) e TP (transformador de potencial) foram parametrizadas corretamente?
- O esquema de ligação foi escolhido de forma adequada?
- A tensão e ou corrente que chegam ao medidor está de acordo com o esperado?
- O casamento entre tensão e corrente está sendo respeitado?

6) A peça retornou ao endereço de IP original de fábrica.

Verifique, no modo "CONFIG REDE", se o instrumento está com a opção "DHCP" em "ON". Neste caso, o Konect assumirá um novo endereço a partir do momento em que exista um IP disponível na LAN. Desta maneira, se o instrumento estiver desconectado da rede ou se não houver um endereço disponível, voltará a apresentar o endereço de fábrica.

Para fazer uma nova tentativa, pode-se reiniciar o medidor.

Outra razão para o retorno ao IP original é o uso do comando "RESTAURA FÁBRICA", já abordado no item "Reset dos parâmetros de comunicação".

Solução de Problemas - Interface RS-485

Neste tópico, a solução de problemas relativos a interface RS-485 não será tratada da forma pergunta/resposta, pois os procedimentos abaixo descritos são aplicáveis a maioria dos casos onde existem problemas na comunicação dos medidores.

Um problema de comunicação, normalmente, é ocasionado por:

Rede instável

Deve-se, antes de tudo, seguir à risca o que é indicado no tópico *Recomendações* do capítulo *Interface RS-485*. O aterramento da linha de comunicação em dois pontos, por exemplo, é um frequente ocasionador de intermitência na comunicação dos medidores. Uma rede do tipo "nó" ao invés de "ponto-a-ponto" também ocasiona perda da qualidade do sinal e, muitas vezes, a impossibilidade da comunicação dos instrumentos.

Verifique se não existem cabos com alta tensão ou de altos valores de corrente próximos aos cabos de comunicação, em especial se não estiver sendo utilizado um cabo blindado. O campo eletromagnético gerado por tais cabos pode interferir na comunicação dos medidores.

Um ponto que sempre vale a pena ser lembrado é a possibilidade de maus contatos, através de emendas ou outros tipos de conexões. Sempre, ao realizar emendas ou conectar "terminais" nos fios da comunicação, prefira a solda ao simples contato físico.

Ligação incorreta

Lembre-se que o sinal da comunicação tem polaridade (DATA+ e DATA-). A inversão dos mesmos na conexão dos medidores ao CLP ou dos medidores ao conversor ocasiona a impossibilidade de comunicação.

Má parametrização do mestre/escravo

Verifique, segundo os passos abaixo, a compatibilização entre mestre/escravo:

- 1. Mestre (CLP ou PC) e o escravo (medidor) comunicam sob o mesmo protocolo?
- 2. Os dois possuem a mesma velocidade de comunicação?
- 3. Os dois possuem o mesmo formato de bits?
- 4. A interface entre o mestre e o escravo, normalmente um conversor RS-485/USB ou RS-485/Ethernet, está compatibilizada em termos de velocidade/formato de bits?
- 5. O escravo está parametrizado com o endereço que o mestre está buscando?

Após o estudo e análise destes itens, caso não haja sucesso na comunicação da rede RS-485, recomendase uma tentativa de conexão isolada ao medidor, na intenção de detectar parâmetros/endereço incorretos, ou ainda se certificar se o problema é no medidor ou na infra-estrutura de rede.

Apêndice A – Código de Erro

Através do Código de Erro é possível verificar uma série de pontos do Konect.

A leitura deste Código de Erro é feita conforme procedimento descrito no capítulo *IHM – Modo FUNÇÕES*.

O código é dividido em três abas distintas. Na IHM é possível visualizar duas destas abas, sendo separadas conforme imagem de exemplo:

O código lido deve ser interpretado conforme a tabelas abaixo:

Tabela 1

Código	Descrição		
00	Funcionamento correto do transdutor.		
	Note que este código não implica em ligação ou parametrização correta do sistema.		
01	Fases de tensão em sequência anti-horária ou falta de uma das fases		
02	Erro matemático		
08	Excedido o limite permitido para tensão e/ou corrente.		
	Isto pode danificar o medidor, sendo necessário envio para assistência técnica		
16	Sistema reinicializado incorretamente		
64	RTC – Bateria fraca.		
128	Erro de memória de massa		

Tabela 2

Código	Descrição
00	Funcionamento Correto.
01	Sistema sincronizando as Fases.
02	Fora da faixa de frequência.
08	Proteção de Firmware ativa.
64	Erro no módulo Ethernet.

O *Código de Erro* é uma informação binária, isto é, caso esteja ocorrendo o erro 001 em conjunto com o erro 016, será informado código de erro 017 (001 + 016).

Código	Descrição
00	Funcionamento Correto.
01	Tempo máximo de conexão com o AP atingido.
02	Senha de conexão com AP incorreta.
04	Não conseguiu encontrar o AP.
08	Conexão com AP falhou.
16	O broker recusou o login da peça.
32	Erro na publicação das grandezas.
64	Sem internet.
128	Erro desconhecido.

Código de erro do Módulo Wi-Fi

Apêndice B – Medição de Demanda

<u>Definição</u>: Demanda é a potência elétrica medida durante um determinado intervalo de tempo. Este intervalo de tempo, chamado *Tempo de Integração (TI)*, possui uma faixa de 1 à 60 minutos e é parametrizável tanto via IHM quanto via interface serial.

A demanda ativa é dada em watts (W) e a demanda aparente em volt-ampér (VA).

Máxima Demanda Ativa (MDA) e Máxima Demanda Aparente (MDS)

A máxima demanda ativa (**MDA**) se refere ao máximo valor calculado para a demanda ativa e a máxima demanda aparente (**MDS**) se refere ao máximo valor calculado para a demanda aparente. Podem ser zerados pela função *Zerar energias e demandas*.

Funcionamento

A medição de demanda do **Konect** utiliza o algoritmo de janela deslizante, isto é, a informação da demanda média (**DA** ou **DS**) é atualizada em intervalos menores do que o tempo de integração. Por este motivo, ao utilizarmos a função de *Zerar energias e demandas* ou ainda realizarmos alteração dos parâmetros de *TC* (transformador de corrente) e *TP* (transformador de potencial), podemos ter resquícios de valores anteriores armazenados em buffer, ocasionando uma leitura incorreta.

Neste caso, devemos aguardar um intervalo de no mínimo um tempo de integração (o parâmetro TI define este intervalo, normalmente parametrizado como 15, para termos a medição de 15 em 15 minutos) ou realizarmos um *sincronismo de demanda*, que faz com que este buffer interno seja zerado.

Sincronismo de Demanda

É disponibilizado, via interface de comunicação, um comando para sincronizar o cálculo da demanda do Konect.

Toda integração possui um começo e fim e, ao efetuarmos o sincronismo, definimos qual será o início desta integração, permitindo, por exemplo, que se realize o sincronismo da medição de demanda do **Konect** com outros medidores de energia utilizados no sistema de automação (em uma comparação com o medidor da concessionária ou para fins de rateio interno).

Apêndice C – Fórmulas Utilizadas

Internamente, para o cálculo das grandezas elétricas, o Konect utiliza as seguintes fórmulas:

• Tensão RMS por fase

$$Vrms = \sqrt{\sum_{1}^{n} (Vi)^2 / n}$$

• Corrente RMS por fase

$$Irms = \sqrt{\sum_{1}^{n} (Ii)^2 / n}$$

• Potência Ativa por fase

$$P = \sum_{1}^{n} \left(Vi \times Ii \right) / n$$

• Potência Aparente por fase

$$S = Vrms \times Irms$$

• Potência Reativa por fase

$$Q = \sqrt{S^2 - P^2}$$

• Fator de Potência por fase

$$FP = \frac{P}{S}$$

• Tensão Trifásica (DELTA) $V\phi = \frac{V12 + V23 + V31}{3}$ • Tensão Trifásica (ESTRELA)

$$V\phi = \frac{V1N + V2N + V3N}{3} \times \sqrt{3}$$

• Potência Ativa Trifásica

$$P\phi = P1 + P2 + P3$$

• Potência Reativa Trifásica

$$Q\phi = Q1 + Q2 + Q3$$

• Potência Aparente Trifásica

$$S\phi = \sqrt{P\phi^2 + Q\phi^2}$$

• Corrente Trifásica

$$I\phi = \frac{S\phi}{V\phi \times \sqrt{3}}$$

• Fator de Potência Trifásico

$$FP\phi = \frac{P\phi}{S\phi}$$

Apêndice D – Memória de Massa / Buffer MQTT (IoT)

Aplicação: É uma memória não-volátil (os dados não são perdidos em caso de falta de alimentação auxiliar) que permite registrar o comportamento histórico de grandezas elétricas.

As informações são armazenadas em formato ponto flutuante, contendo sua data e hora, oriundas de um relógio interno existente no multimedidor.

Tipo: memória não-volátil (retentiva)

Capacidade: 2 MBytes

Modo de armazenamento: circular (ao esgotar a capacidade da memória, os dados mais antigos são apagados para escrita dos mais novos, setorialmente) ou linear (ao esgotar a capacidade da memória, os dados param de ser armazenados)

Os dados armazenados podem ser coletados pelas interfaces RS-485, Ethernet, Wi-Fi ou Bluetooth, utilizando-se CLPs, concentradores de dados, aplicativos supervisórios ou os softwares RedeMB e RedeMBTCP.

Estes softwares permitem exportar as informações em arquivo de texto, sem formatação (texto – "txt"), facilitando a composição de gráficos no Excel, por exemplo.

Com a função IoT habilitada, a Memória do Konect servirá como um backup para os dados que são enviados para a nuvem. Nesse caso, podem ser armazenadas na memória (e enviados para a nuvem) até 20 grandezas elétricas. Com a função IoT habilitada, a memória será automaticamente configurada como Circular.

É muito importante salientar que, mesmo que os dados sejam enviados para a nuvem, eles continuam armazenados internamente, até que a memória seja totalmente preenchida.

Logo, os primeiros dados que foram armazenados são excluídos para que novos dados possam ser gravados (modo circular).

Abaixo, exemplo de autonomia da memória de massa de acordo com o número de grandezas selecionadas, considerando intervalo de armazenamento de 1, 10 e 15 minutos.

Nº de	Autonomia (em dias)	Autonomia (em dias)	Autonomia (em dias)
Grandezas	para IA=1 minuto	para IA=10 minutos	para IA=15 minutos
1	156	1567	2351
2	117	1175	1763
3	94	940	1410
4	78	783	1175
5	67	671	1007
6	58	587	881
7	52	522	783
8	47	470	705
9	42	427	640
10	39	391	587
11	36	361	542
12	33	335	503
13	31	313	470
14	29	293	440
15	27	276	414
16	26	261	391
17	24	247	371
18	23	235	352
19	22	223	335
20	21	213	320

Apêndice E - Glossário

Este capítulo possui breves explicações à cerca dos termos técnicos utilizados neste manual, inclusive em relação a nomenclaturas e abreviações utilizadas nos produtos KRON.

Alimentação Auxiliar ou Alimentação Externa	É uma tensão utilizada para energizar internamente o equipamento, isto é, fazer funcionar seus circuitos internos.
Faixa de Medição	Faixa de valores nas quais o instrumento realiza suas medições com as precisões informadas no capítulo <i>Características Técnicas</i> .
тс	Transformador de Corrente. É um transformador utilizado para adequar e/ou isolar a corrente do circuito principal (fases) do circuito de medição (entradas dos medidores).
ті	Tempo de Integração. É uma constante interna que define a cada quantos minutos deve ser calculado o valor de demanda.
TL	Tipo de Ligação. É uma constante interna que define qual o tipo de circuito que está sendo medido, se monofásico, bifásico ou trifásico.
ТР	Transformador de Potencial. É um transformador utilizado para adequar e/ou isolar a tensão do circuito principal do circuito de medição.
TRUE RMS	Tipo de medição onde é levada em consideração a distorção presente em uma determinada forma de onda. Considerando que a maioria dos sistemas industriais possui cargas não lineares, é imprescindível que, para uma leitura coerente, o instrumento seja dotado desta característica.
Protocolo de Comunicação	É a "língua" falada pela interface serial do medidor. Ao realizar a automação de um sistema, é necessário que o mestre e o escravo falem a mesma língua, isto é, utilizem o mesmo protocolo. Para a linha KS , o padrão utilizado é o protocolo MODBUS-RTU. Os modelos com Wi-Fi operam nos protocolos MODBUS-TCP e MQTT (IoT).
MODBUS-RTU	Protocolo de comunicação padrão para os instrumentos da linha KS. É um protocolo desenvolvido pela MODICON [®] e permite que os dados da interface serial dos medidores sejam lidos por sistemas de automação. É o "idioma" falado pela interface serial.
MQTT	Protocolo de mensagens leve, otimizado para redes TCP/IP de alta latência. A troca de mensagens é fundamentada no modelo Publicador-Subscritor, extremamente simples, o que facilita sua aplicação em dispositivos com suporte a Internet das Coisas (IoT).
RedeMB e RedeMBTCP	Softwares fornecidos gratuitamente para leitura e parametrização dos medidores Kron. O RedeMB permite comunicação por RS-485 e Bluetooth; já o RedeMBTCP, recebe dispositivos com saídas Ethernet ou comunicação Wi-Fi.
RS-485	É um tipo de interface de comunicação serial. É uma das opções para requisição de informações a partir de dispositivos mestres.
BaudRate	É a velocidade em que um determinado instrumento se comunica com outro. Quanto maior este valor, mais rápida a comunicação.
Paridade	É uma função utilizada para marcação de uma determinada mensagem enviada por um instrumento. Pode não existir, ser par (O – ODD) ou ímpar (E – EVEN).
Stop Bits	É a quantidade de bits de parada que um determinado instrumento transmite ao finalizar o envio de uma mensagem. Um equipamento normalmente trabalha com 1 stop bit ou com 2 stop bits.